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Coherent structures in canopy edge flow: a
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Large coherent structures over vegetation canopies are responsible for a substantial
part of the turbulent transfer of momentum, heat and mass between the canopy
and the atmosphere. As forested landscapes are often fragmented, edge regions may
be of importance in turbulent transfer. The development of coherent structures
from the leading edge of a forest is investigated here for the first time. For this
purpose, the turbulent flow over a clearing–forest pattern is simulated using the
Advanced Regional Prediction System (ARPS). In previous studies the code has been
modified so as to simulate turbulent flows at very fine scale (0.1h, where h is the
mean canopy height) within and above heterogeneous vegetation canopies, using a
large-eddy simulation (LES) approach. Validations have also been performed over
homogeneous forest canopies and over a simple forest–clearing–forest pattern, against
field and wind-tunnel measurements. Here, a schematic picture of the development
of coherent eddies downstream from the leading edge of a forest is extracted from
the mean vorticity components, the Q-criterion field, the cross-correlation of the
wind velocity components and the length and separation length scales of coherent
structures, determined by using a wavelet transform. This schematic picture shows
strong similarities with the development of coherent structures observed in a mixing
layer, with four different regions: (i) close to the edge, Kelvin–Helmholtz instabilities
develop when a strong wind gust hits the canopy; (ii) these instabilities roll over to
form transverse vortices from around 3h downstream from the edge, characterized by
a length scale close to the depth of the internal boundary layer that develops from
the canopy edge; (iii) secondary instabilities destabilize these rollers and increase
the vertical and streamwise vorticity components from around 6h, and two counter-
rotating streamwise vortices appear; (iv) at about 9h the initial rollers have become
complex three-dimensional coherent structures, with spatially constant mean length
and separation length scales. These four stages of development occur closer to the
edge with increasing canopy density. While this average picture of the development
of coherent structures is similar to that observed in a mixing layer, the analysis of
instantaneous fields shows that coherent structures behind the leading edge appear
as resulting from the ‘branching’ of tubes localized in regions of low pressure, where
their cores are characterized by high values of enstrophy and Q-criterion.

1. Introduction
Turbulent flows can be viewed as composed of coherent eddy structures evolving

in unorganized random background turbulence (Schneider & Farge 2003). In the
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Figure 1. Schematic diagram of the formation of coherent eddy structures over a homo–
geneous canopy, as adapted by Quine et al. (1995, p. 24) from Finnigan & Brunet (1995).

natural environment, such coherent structures have been consistently observed over
horizontally homogeneous plant canopies. It has been demonstrated that canopy-type
structures are generated by processes similar to those occurring in plane mixing-
layer flows (Raupach, Finnigan & Brunet 1996), as sketched in the diagram of
Finnigan & Brunet (1995) (figure 1). The inflection point in the mean velocity
profile at the canopy top leads to the development of Kelvin–Helmholtz instabilities;
these instabilities first roll over to form transverse vortices that are subsequently
transformed through secondary instabilities into three-dimensional structures. Large
coherent structures are characterized by cycles of strong ‘sweeps’ (gusts) and weak
‘ejections’ (bursts) that are responsible for a substantial part of the turbulent transfer
of momentum, heat and mass between the canopy and the atmosphere (Gao, Shaw
& Paw U 1989; Lu & Fitzjarrald 1994). In order to understand transfer processes,
a better knowledge of the dynamics of coherent structures is therefore of primary
importance. In a broader view, better knowledge is also necessary to improve turbulent
flow modelling (Jeong & Hussain 1995). A decomposition of flow fields into active
(coherent structures) and inactive components has been advocated as an alternative to
the more classical decomposition into average (large-scale) and fluctuating (subgrid-
scale or SGS) components (Katul et al. 1998; Farge & Schneider 2006).

1.1. Detection of coherent structures over homogeneous vegetation canopies

Coherent eddy structures over homogeneous vegetation canopies have been
investigated for years from in situ and wind-tunnel experiments (Paw et al. 1992;
Collineau & Brunet 1993a , b; Turner et al. 1994; Qiu, Paw & Shaw 1995; Shaw et al.
1995; Brunet & Irvine 2000; Ghisalberti & Nepf 2002) as well as from numerical
experiments (Kanda & Hino 1994; Su, Shaw & Paw U 2000; Watanabe 2004; Shaw
et al. 2006; Dupont & Brunet 2008b; Finnigan, Shaw & Patton 2009), as discussed in
the next subsection. However, because of their intermittency, their three-dimensional
character and the difficulty to isolate them from background turbulence, information
on the dynamics and topology of coherent structures still remains limited. Finnigan
(2000) reviewed the main techniques used to detect or visualize coherent structures
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from experimental time series collected in the vicinity of vegetation canopies. Shaw
et al. (1995) derived spatial information on these structures by performing space–time
correlations on velocity fields measured in a wind tunnel. They observed that turbulent
structures are well correlated within a tilted elongated elliptical region extending over
10h in the streamwise direction and concentrated in a smaller region of extent about
2h in the vertical direction, where h is the canopy height. Unlike in plane mixing-layer
flows, these structures progress along the canopy with a convective velocity larger
than the mean flow velocity at the canopy top.

Applying empirical orthogonal functions (EOFs) on the dataset of Shaw et al.
(1995), Finnigan & Shaw (2000) observed that large coherent structures could be
represented as a weak ejection followed by a strong sweep in the streamwise direction
and as a pair of counter-rotating longitudinal vortices in the spanwise direction. Very
recently, Finnigan et al. (2009) updated this picture by compositing data from a large-
eddy simulation (LES). They observed that head-down hairpin vortices responsible
for sweeps are also linked with downstream head-up vortices that induce an ejection
upstream from the sweep. In fact, the EOF-derived structure is the ensemble average
of the two hairpin vortices (Finnigan et al. 2009).

Since the presence of coherent structures can be identified from occasional large-
amplitude excursions of instantaneous flow variables from their mean values, several
conditional techniques have also been used in the literature to detect ramp-like
coherent structures in time series of turbulent variables (see Finnigan 2000 for a
short review). Conditional sampling techniques are easier to use than two-point
space–time correlations, since they do not require simultaneous measurements at
different locations. The wavelet transform is one of these techniques that has already
demonstrated its ability (Collineau & Brunet 1993a , b; Turner et al. 1994; Qiu
et al. 1995; Brunet & Irvine 2000). Collineau & Brunet (1993a , b) were the first
to demonstrate that the wavelet transform is a suitable tool for detecting coherent
structures in the vicinity of vegetation canopies by decomposing time series into
time and space and by determining the location of the dominant structures in the
time series. Using such techniques and others, Raupach et al. (1996) showed that the
mean longitudinal separation between adjacent coherent structures is a function of
a shear length scale derived from the vorticity thickness of plane mixing layers, and
Brunet & Irvine (2000) extended these results to a larger dataset including non-neutral
atmospheric conditions.

1.2. LES over vegetation canopies

Direct numerical simulation (DNS) and LES provide details of the velocity field,
allowing the spatial characteristics of large turbulent structures to be analysed, since
instantaneous dynamic fields are explicitly resolved at a resolution not attainable in
field or wind-tunnel experiments. DNS and LES have been widely used by the fluid
mechanics community to analyse the development and topology of coherent structures
in wall-bounded flows or in other flow configurations such as mixing layers (see,
for example, Comte, Lesieur & Fouillet 1989; Comte, Lesieur & Lamballais 1992;
Dubief & Delcayre 2000; Lesieur et al. 2003; Schneider et al. 2005). In the same way as
for field and wind-tunnel experiments, one of the main difficulties encountered in these
studies concerns the extraction of coherent structures from background turbulence.
A coherent structure is usually considered as a vortex, but the concept of a vortex
is still ambiguous (Jeong & Hussain 1995; Cucitore, Quadrio & Baron 1999; Haller
2005). For this purpose, several identification techniques of vortex cores have been
developed, focusing on regions of low pressure or large vorticity or on the eigenvalues
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of the velocity-gradient tensor. Reviews of these techniques are presented in Jeong &
Hussain (1995) and Cucitore et al. (1999), who showed that they are all prone to fail
in specific conditions. For example the vorticity magnitude, i.e. the enstrophy, does not
appear as an adequate criterion for the identification of vortices in shear flows in which
the flow rotation rate is comparable to the strain rate (Jeong & Hussain 1995). Indeed,
vorticity can be large in parallel shear flow without the presence of vortices (Haller
2005). Therefore, vortex cores are usually defined as regions in which the rotation
rate dominates the strain rate, known also as roller regions, in opposition to the braid
region in which the strain rate dominates the rotation rate (Rogers & Moser 1994).

Over homogeneous vegetation canopies the LES approach has first been applied
in neutral stratification by Shaw & Schumann (1992), who obtained qualitative
agreement with mean turbulence statistics derived from in situ and wind-tunnel
datasets. Further studies confirmed that LES is able to reproduce in detail many
observed characteristics of turbulent flow over homogeneous canopies (Kanda &
Hino 1994; Dwyer, Patton & Shaw 1997; Shen & Leclerc 1997; Su et al. 1998, 2000;
Watanabe 2004; Dupont & Brunet 2008b). Coherent structures from resolved LES
flow fields have been analysed by several authors. Kanda & Hino (1994) obtained a
picture of an instantaneous coherent structure similar to that observed in situ by Gao
et al. (1989). Su et al. (2000) showed that two-point correlation fields can reproduce
the main characteristics observed in situ and in a wind tunnel, and Watanabe (2004)
analysed coherent eddy structures from ensemble-averaged scalar ramp structure
detection. Dupont & Brunet (2008b) studied the impact of the vertical variation in
leaf area index (LAI, the total leaf area per unit surface area) on the characteristics
of coherent structures. To date, the most detailed numerical study on coherent eddies
over homogeneous canopies has been performed by Finnigan et al. (2009), who
characterized the structure of coherent eddies from a composite average deduced
from LES outputs.

Turbulent flows over forest edges and clearings have been studied in several wind-
tunnel (Raupach, Bradley & Ghadiri 1987; Chen, Novak & Adams 1995) and field
(Raynor 1971; Gash 1986; Irvine, Gardiner & Hill 1997; Flesch & Wilson 1999;
Nieveen, El-Kilani & Jacobs 2001) experiments. Lee (2000) presented a review of
studies on disturbed flow across forest edges. The edge flow can be divided into
several distinct regions as suggested by Belcher, Jerram & Hunt (2003) in their
analytical model: (i) the impact region at the edge; (ii) the adjustment region behind
the edge, where the flow adjusts with the canopy; (iii) the canopy interior region
further downstream, where the flow has adjusted with the canopy characteristics; (iv)
the canopy shear layer at the canopy top, where coherent structures develop; and
(v) the roughness-change region representing the growing internal boundary layer
(IBL), which develops above the canopy. LES has also been applied to heterogeneous
vegetation canopies by several authors but without focusing on coherent structures.
Patton et al. (1998) validated their model in a configuration with multiple windbreaks
against the wind-tunnel dataset of Judd, Raupach & Finnigan (1996). Yang et al.
(2006a , b) analysed momentum and turbulent kinetic energy (TKE) budgets, and
Dupont & Brunet (2008a) analysed the structure of the flow in the edge region for
various vertical distributions of leaf area. Additionally, Cassiani, Katul & Albertson
(2008) investigated the main characteristics of the flow behind forest trailing edges.

1.3. Objectives

The objective of the present work is to analyse the development of coherent struc-
tures from the leading edge of sparse and dense forest canopies in a neutral and
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dry atmosphere. For this purpose, LES fields were computed with the Advanced
Regional Prediction System (ARPS) version 5.1.5, developed at the Center for Analysis
and Prediction of Storms (CAPS) at the University of Oklahoma and modified by
Dupont & Brunet (2008b) to simulate turbulent flows over plant canopies at very fine
scales (about 0.1h, where h is the mean canopy height). The average velocity and the
turbulent statistical fields simulated by this new version of the ARPS have already
been validated against field and wind-tunnel measurements over homogeneous forest
canopies, in a simple forest–clearing–forest transition, as well as over a forested hill
(Dupont & Brunet 2008a ,b; Dupont, Brunet & Finnigan 2008).

The model is first presented, along with the numerical simulation set-up and the
procedures used to analyse field data. We then analyse the mean statistical turbulence
fields across the forest edge and the development of coherent structures from the
leading edge as deduced from mean enstrophy and Q-criterion fields. We later perform
a two-point space correlation analysis and a conditional analysis of the velocity fields.
The development of specific coherent structures from instantaneous turbulence fields
are then investigated, before we move on to the final discussion.

2. Methods
2.1. Model

The ARPS is a complete weather forecast system that has been extensively validated
over the last decade in a variety of mesoscale flows. A detailed description of the
standard version of the model and the results of validation exercises are available
in the ARPS user’s manual (Xue et al. 1995) and in Xue, Droegemeier & Wong
(2000) and Xue et al. (2001). We describe here briefly the model, with a focus on
the modifications that were made in order to simulate the flow within vegetation
canopies.

The ARPS is a three-dimensional, non-hydrostatic compressible model in which
Navier–Stokes equations are written in terrain-following coordinates. The grid is
orthogonal in the horizontal direction and stretched in the vertical. The model solves
the conservation equations for the three wind velocity components, pressure, potential
temperature and water substance (water vapour, cloud water, rainwater, cloud ice,
snow and graupel). Each wind component and atmospheric state variable (air density,
pressure and potential temperature) is split into a base-state component (overbarred
variable) and a deviation from the latter (double-primed variable). The base state is
assumed to be horizontally homogeneous, time invariant and hydrostatically balanced.
To ensure high spatial resolution, all conservation equations are filtered so as to
separate the small scales from the large scales. Large eddies are therefore explicitly
resolved by the equations, while the effect of smaller eddies on larger eddies is
modelled. The discretization of the equations on the grid is treated as an implicit
filter operation. Therefore, filtered equations can be seen as grid-volume-averaged
equations. Within the vegetated layer, the shear flow at the canopy top involves
eddies larger than wake eddies behind vegetation elements, and dissipation occurs
through the smallest eddies (down to the Kolmogorov scale). The filter scale or
grid spacing is located within the inertial sub-range. All turbulent structures larger
than the filter scale are explicitly resolved by the model; this is the case for most
turbulent eddies produced by wind shear, while smaller turbulent structures, i.e. SGS
turbulent motions, are modelled through a 1.5-order turbulence closure scheme with
the resolution of a conservation equation for SGS TKE.
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The ARPS momentum and SGS TKE equations have been modified so as to
account for the effect of vegetation on the turbulent flow in the same manner as
Watanabe (2004). For the sake of simplicity momentum and SGS TKE equations
presented hereafter are written in Cartesian coordinates for a dry atmosphere, and
all simulations presented here are only performed under neutrally stratified and dry
flow over a flat terrain. Despite the atmosphere being considered as neutral, heat
terms are present in these equations, since the potential temperature equation (not
shown) is solved to provide initial turbulent perturbations leading to the development
of turbulent motions. Using the Einstein summation convention the momentum
equation for a Boussinesq fluid is therefore written as

ρ

(
∂ũi

∂t
+ ũj

∂ũi

∂xj

)
= − ∂

∂xi

(
p̃′′ − αdiv

∂ρũj

∂xj

)
− 2ρωjεijk (ũk − uk)

− ρg

(
θ̃ ′′

θ
− cp

cv

p̃′′

p

)
δi3 − ρ

∂τ ij

∂xj

− CdAf

√
ũj ũj ũi , (2.1)

where the overtilde indicates the filtered variables or grid-volume-averaged variables.
In this equation, t is time and xi (x1 = x, x2 = y, x3 = z) are the streamwise, lateral
and vertical directions, respectively; ui (u1 = u, u2 = v, u3 = w) are the instantaneous
velocity components along xi; δij is the Kronecker symbol; εijk is the alternating
unit tensor; αdiv is a damping coefficient used to attenuate acoustic waves; p is the
air pressure; ρ the air density; g the acceleration due to gravity; θ the potential
temperature; and cp and cv are the specific heat of air at constant pressure and
volume, respectively.

The terms on the right-hand side of (2.1) represent respectively the pressure-gradient
force term, the Coriolis term, the buoyancy term, the turbulent transport term and the
pressure and viscous drag force term induced by the vegetation; Cd is the mean drag
coefficient of the canopy and Af is the frontal area density of the vegetation (m2m−3).
In the Coriolis term, ω represents the angular velocity of the Earth, and the second
part of the Coriolis term, −2ρωjεijkuk , represents the geostrophic pressure-gradient
force associated with the base-state wind. The Coriolis force is only applied on wind
perturbations, since the steady base state is already geostrophically balanced.

The Reynolds or sub-filter-scale or subgrid stress tensor τ ij is modelled through an
SGS eddy-viscosity or gradient-transport model as

τ ij = −νt

(
∂ũi

∂xj

+
∂ũj

∂xi

)
, (2.2)

where νt is the eddy viscosity modelled as the product of a length scale and a velocity
scale characterizing the SGS turbulent eddies, following

νt = 0.1
√

e l. (2.3)

In a neutral atmosphere with isotropic turbulence, the mixing length depends on
the grid spacing:

l = (
x
y
z)1/3 , (2.4)

where 
x, 
y and 
z are the grid spacings in the longitudinal, lateral and vertical
directions, respectively. In the ARPS it is also possible to use different horizontal and
vertical mixing lengths for different horizontal and vertical grid spacings.
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Figure 2. Frontal area density profiles of the two forest canopies considered here.

The SGS velocity scale is computed by solving the conservation equation of the
SGS TKE e:

∂e

∂t
+ ũj

∂e

∂xj

= −τij

∂ũi

∂xj

− g

θ
τ3θ +

∂

∂xj

(
2νt

∂e

∂xj

)
− Cε

e3/2

l
− 2CdAf

√
ũj ũj e. (2.5)

The terms on the right-hand side of (2.5) represent respectively the dynamic shear
production term, the buoyancy production term, the turbulent transport term, the
dissipation term and the SGS TKE cascade term; the last term represents the energy-
loss process that accelerates the dissipation of turbulence in the canopy – as the
eddies of all scales larger than the canopy elements lose their TKE to both heat
and wake through their interaction with the vegetation, the inertial eddy cascade is
short-circuited (Baldocchi & Meyers 1988; Finnigan 2000). This is emphasized by the
presence of small wake eddies. The SGS TKE production by wake motions behind
vegetation elements is not considered, as their scales are much smaller than those
making up the bulk of SGS TKE (Shaw & Schumann 1992).

The subgrid heat flux is written as

τ3θ = − νt

Pr

∂θ̃

∂x3

, (2.6)

where the Prandtl number Pr is taken equal to 1 in the present study.
For the sake of simplicity the overtilde on ũi will be omitted from now on.

2.2. Numerical details

Two three-dimensional simulations have been performed over a canopy–clearing–
canopy pattern in which the canopy height, h, is set at 18 m with a frontal area
density, Af , corresponding to the deciduous forest studied by Shaw, Hartog &
Neumann (1988). Two cases of LAI are considered: LAI = 2 and 5 for cases 1
and 2, respectively (see figure 2). These two values of LAI should provide relevant
information on the impact of variations in canopy density on turbulent edge flow
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fields, without considering extreme cases, as in nature plant canopy LAI ranges from
1.3 ± 0.9 for deserts to 8.7 ± 4.3 for tree plantations (Asner, Scurlock & Hicke 2003).
The drag coefficient, Cd , is equal to 0.2, which is a typical value often observed
for trees. The clearing and forest lengths are set to 20h and 17.1h, respectively. As
lateral boundary conditions are periodic, these clearing and forest lengths result from
a compromise between constraints related to the available computational time, to
a canopy length that is large enough for observing flow adjustment with the forest
canopy and to a clearing length that is large enough for limiting the impact of the
upwind forest on the leading-edge flow. Note that the length of the clearing chosen
here is similar to that used in previous wind-tunnel (Raupach et al. 1987) and LES
(Yang et al. 2006 b; Dupont & Brunet 2008b) studies also related to forest edge flow.

The computational domain extends over 668 × 200 × 200 m3, corresponding to
345 × 100 × 65 grid points in the x-, y- and z-direction, respectively, with 2 m grid
spacing below z = 84 m and a vertically stretched grid above. This resolution allows
us to simulate turbulent structures induced by the mean shear at the canopy top,
since their horizontal size is of the order of h, and their vertical size of the order
of h/3 (Finnigan 2000). The limitation of the vertical size of the domain due to
computational time considerations does not allow large mesoscale structures to be
resolved. This should not have noticeable consequences on the main results of this
study, which only focuses on turbulence at the canopy scale, in a neutral atmosphere.

The lateral boundary conditions are periodic. At the lower boundary, treated as a
rigid surface, the momentum flux is parameterized using a bulk aerodynamic drag
law. A 70 m depth Rayleigh damping layer is used at the upper boundary in order
to absorb upward-propagating wave disturbances and to eliminate wave reflection at
the top of the domain. The velocity fields are initialized from the base-state wind
profile which was computed from a meteorological pre-processor (Pénelon, Calmet &
Mironov 2001) with a constant vertical profile of potential temperature (300 K), a dry
atmosphere and geostrophic wind components equal to 18 m s−1 and −3.5 m s−1 in
the x- and y-direction, respectively. The flow is driven by the geostrophic pressure
gradient associated with the base-state wind in the Coriolis term (2.1).

2.3. LES data analysis

After the flow has reached an equilibrium state, wind velocity and turbulent statistical
fields are averaged in space over all y-locations at all given heights z and in time over
90 samples collected during a 30 min period. Consequently, wind velocity components
ui can be decomposed into ui = 〈ui〉yt +u′

i , where the symbol 〈〉yt denotes the time and
space average and the prime the deviation from the averaged value. For convenience
in the result analysis, the origin of the longitudinal axis is hereafter set at the forest
leading edge.

The following variables are selected to describe the turbulent statistics:
(i) The total mean TKE ktot = 1/2〈u′

iu
′
i〉yt + 〈e〉yt , which includes the resolved

and SGS components of TKE.
(ii) The vertical momentum flux 〈u′w′〉yt .
(iii) The ratio between the Reynolds stresses in the fourth and second quadrants,

Quw = 〈u′w′〉IV
yt /〈u′w′〉II

yt , corresponding to sweep and ejection events, respectively.
This parameter allows the overall relative contribution of the ejection and sweep eddy
motions to the mean momentum flux to be quantified.

(iv) The correlation coefficient between u and w, representing the efficiency of
turbulence for momentum transport, ruw = 〈u′w′〉yt/σuσw , where σui

is the standard
deviation of the velocity component ui .
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(v) The pressure variance 〈p′2〉yt .

(vi) The skewness of ui , Ski = 〈u′3
i 〉yt/〈u′

iu
′
i〉

3/2
yt , which provides information about

the symmetry of the probability distribution of ui around its mean value.
(vii) The two-point cross-correlation coefficients, computed from the velocity

components at various distances X from the canopy leading edge, so as to characterize
the mean size of coherent eddy structures,

Rij (x − X, y, z) =
〈ui(X, 0, h)uj (x, y, z)〉t

σui
(X, 0, h)σuj

(x, y, z)
, (2.7)

where the reference point of the correlation is located at distance X from the canopy
leading edge, at the origin of the lateral coordinates (middle of the lateral side of the
computational domain) and at the canopy top. When Rij is analysed in the x–z plane,
it is spatially averaged over all y-locations at each considered (x − X, z)-position, in
addition to time averaging.

(viii) The local rotation rate of the flow, quantified from the enstrophy, i.e. half the
square of relative vorticity,

E = 1/2〈ωiωi〉yt , (2.8)

where ωi is the instantaneous vorticity component of the flow along xi .
(ix) The Q-criterion, which quantifies the relative amplitude of the rotation rate

and the strain rate of the flow and helps identify vortex cores,

Qc = 1/2〈Ω ijΩ ij − SijSij 〉yt , (2.9)

where Ω ij = (ui,j −uj,i)/2 and Sij = (ui,j +uj,i)/2 are the antisymmetric and symmetric
components of the velocity-gradient tensor, respectively (where the subscript ‘comma’
denotes partial differentiation). The Q-criterion is expected to be positive in vortex
cores.

Additionally, the length and separation length scales of coherent structures at the
canopy top are assessed at several distances from the leading edge from the wavelet
transform technique applied on 30 min time series of the streamwise and vertical
velocities by using the same procedure as that given by Brunet & Irvine (2000). A
summary of this procedure is provided in the Appendix.

3. Results
The conventional mean turbulent fields are first analysed over the forest leading

edge. Several of these fields have already been validated over a forest edge by Dupont
& Brunet (2008a) against the wind-tunnel measurements of Raupach et al. (1987),
and the spatial length and frequency of simulated coherent structures have also been
validated over homogeneous canopies (Dupont & Brunet 2008b). We can therefore
be confident in the ability of the ARPS to simulate coherent structures accurately. In
the following subsections, the development of coherent structures from the leading
edge is investigated through the mean enstrophy (2.8) and Q-criterion (2.9) fields, the
cross-correlation of wind velocity components (2.7) and the separation length scale
of the structures. Finally, the observation of instantaneous turbulent fields allows us
to follow the various stages of development of two specific coherent structures.

3.1. Mean statistical fields across a canopy edge

Figure 3 presents x–z slices of time- and y-averaged 〈u〉yt , 〈w〉yt , ktot , 〈u′w′〉yt , Quw ,
ruw , 〈p′2〉yt and Sku across the forest edge with LAI = 2. Here 〈u〉yt , 〈w〉yt , ktot , 〈u′w′〉yt
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Figure 3. Vertical cross-section of the average simulated edge flow in case 1 (LAI = 2):
streamwise wind velocity (a), vertical velocity (b), TKE (c), momentum flux (d ), ratio of the
Reynolds stresses in the fourth and second quadrants (e), correlation coefficient (f ), pressure
variance (g) and skewness of u (e). All variables are normalized from mean quantities computed
at X = −8.5h and z =2h. The dashed black line indicates the contour of the canopy and the
black dots the upper limit of the IBL.
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Figure 4. Variation of the IBL depth, hIBL, and the shear length scale, Ls , downwind from
the forest leading edge in cases 1 (LAI = 2) and 2 (LAI =5).

and 〈p′2〉yt are normalized with the streamwise velocity uref located upwind from the
forest leading edge, at X = −8.5h and z = 2h. Before we analyse the flow behind the
edge, it is convenient to briefly describe the flow in the clearing. Downwind from
the trailing edge of the first forest block, at X = −20h, the flow accelerates near the
ground and starts to adjust with the new surface underneath (not shown). The large
amount of TKE around treetop is advected downwind from the first forest block and
diffuses over the vertical, as for momentum, characterizing the wake region of the
upwind forest. Although figure 3 focuses on the leading-edge flow of the second forest
block, this wake region is visible on the upper left of figure 3(c, d ) at X = −5h, where
TKE and the momentum flux are larger at z = 3h than when closer to the ground.
In the clearing the flow progressively reaches a new equilibrium with the surface. The
length of the clearing, 20h, is not sufficient for a fully adjusted flow to be observed,
but it is large enough to limit the impact of the wake region of the upwind forest on
the leading-edge flow.

As for a surface roughness transition, the flow at the forest leading edge is distorted,
and an IBL develops above the canopy, while the flow adjusts with the canopy
underneath. As will be seen further, this adjustment does not start at the edge but
after a few canopy heights downstream, defining the adjustment region that precedes
the equilibrium region. Several methods exist to estimate the IBL height, as reviewed
by Bou-Zeid, Meneveau & Parlange (2004). The IBL depth hIBL is computed here as
the height above the canopy at which the averaged wind profile becomes insensitive
to the canopy underneath, i.e. ∂〈u〉yt/∂z = ∂〈u〉xyt/∂z, where 〈〉xyt indicates a time and
spatial average along the streamwise and spanwise directions. The IBL growth is
shown in figure 4 through the variation of the IBL depth, hIBL, from the edge; the
upper limit of the IBL is also shown with black dots in figure 3. It appears from
figure 4 that hIBL increases rapidly from the edge, then reaches about 1h above the
canopy at X = 6h and is still growing at X = 16h.

The adjustment region is characterized by a decrease in horizontal velocity within
the forest downwind from the edge (figure 3a) and a positive vertical velocity
(figure 3b). A streamwise wind jet forms in the sub-canopy layer from the leading
edge to about X = 10h, due to the lower density of the canopy trunk layer as
compared to the crown layer. Above the canopy the flow accelerates, and the vertical
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velocity remains positive down to about X = 10h. There the streamwise flow velocity
has adjusted with the canopy, and the vertical component is virtually zero. Belcher,
Finnigan & Harman (2008) attempted to estimate the length of the adjustment region
from basic canopy properties (drag coefficient, Cd , and frontal area density, Af ). They
deduced from an analytical approach of a neutrally stratified edge flow that there
should be an adjustment region about 3Lc in length, where Lc is the adjustment length
scale for momentum defined as Lc = h/

∫ h

0
CdAf dz. This estimate was in agreement

with measurements performed over model trees and arrays of cubes and cylinders
(Belcher et al. 2008). In the present study, if we assume that the adjustment region ends
where 〈w〉yt/uref < 0.01 at the canopy top, its length is about 10h, which represents
about 4Lc. This is a result similar to that of Belcher et al. (2008), with a slightly
larger distance that may be due to the fact that Lc is assumed to depend only on
the integral value of foliage canopy properties and thus does not include the vertical
distribution of the foliage. Here, the presence of a streamwise wind jet within our
sub-canopy layer may be responsible for the longer adjustment region, compared to
a canopy with a uniform vertical foliage distribution.

A shear layer forms at the canopy top, defined by a strong wind shear and an
inflected wind profile. The depth of this layer is usually characterized by the shear
length scale Ls defined by Raupach et al. (1996) as Ls = 〈u〉z = h

yt /(∂〈u〉yt/∂z)z =h. The
canopy-top shear layer adjusts rapidly from the edge, as Ls reaches its equilibrium
value of 0.38h at about X =3h (figure 4). Slightly further downstream, the large wind
shear at treetop induces the development of a region of strong turbulence above the
canopy from around X = 8h, visible in figure 3(c) as a growing sublayer within the
IBL. As previously observed (see, for example, Liu et al. 1996; Morse, Gardiner &
Marshall 2002; Dupont & Brunet 2008a), the production of turbulence is not effective
from the leading edge but coincides with the vertical velocity approaching zero, as
was suggested by Morse et al. (2002). Indeed, while the contribution of streamwise
advection to the TKE budget is only significant in the region just behind the leading
edge, the contribution of vertical advection is significant in the whole adjustment
region, from X = 0h to X = 10h, in agreement with the behaviour of vertical velocity.
This contribution goes through a maximum in the region X = 2h–3h, where TKE
is minimum and where the contribution of SGS TKE is maximum (up to 8 % of
total TKE; result not shown). Although TKE is produced by the shear layer at the
canopy top, the vertical advection of TKE explains the delay in the development of
the turbulent region above the canopy, due to the advection of less turbulent flow
from the lowest layers towards the top of the canopy. Further downstream, in the
equilibrium region, TKE at the canopy top is essentially produced by vertical shear
and partially dissipated by canopy drag, while the turbulent diffusion term is a sink
for TKE above the canopy and a source within the canopy (Yang et al. 2006a). This
implies that TKE is imported within the canopy from above through the action of
coherent structures, which maintains a significant level of TKE in the lower canopy
through pressure diffusion.

The vertical momentum flux decays very rapidly within the canopy, and a region
of large flux develops above the canopy, within the IBL and closer to the edge than
for TKE (figure 3d ). Just behind the edge, a small region with a positive (upward)
momentum flux is present within the canopy (not visible in the figure). This feature
may be explained by a mean upward motion due to the decrease of wind velocity
in the canopy. Up to about X = 3h downwind from the edge, momentum transfer
is dominated by ejection motions (figure 3e), whereas further downstream sweep
motions become large, as is observed over homogeneous canopies (Raupach et al.
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1996; Finnigan 2000). At the canopy top, the correlation coefficient ruw , a measure
of the efficiency of transport by turbulence, is fairly low at the edge (about −0.28)
and increases rapidly further downwind to reach its equilibrium value, about −0.55,
around X = 2h (figure 3f ). In the same way as the shear length scale, Ls , at the
canopy top, ruw adjusts very rapidly with the canopy in comparison with other
turbulent variables. This behaviour of ruw as well as its magnitude is fairly consistent
with those reported by Morse et al. (2002) from field and wind-tunnel experiments.
While the lower values of ruw at the edge may be explained by the absence of canopy-
scale eddies, as suggested by Morse et al. (2002), the rapid increase and adjustment
of ruw further downstream is not quite clear, as canopy-scale eddies may only develop
from around X = 2h (see § 3.2).

The pressure variance increases from X = 3h and seems adjusted around X = 6h.
It shows a maximum just above the canopy (figure 3g). Within the upper canopy,
between z = 0.7h and z = 1h and between X =2.5h and X = 6h, a region of large
skewness in streamwise velocity (Sku > 1.5) is simulated, indicating an asymmetric
distribution of wind velocity around its mean value, with a larger probability of sudden
strong events (gusts). This region corresponds to the ‘enhanced gust zone’ (EGZ)
observed by Raupach et al. (1987) between X = 3h and X = 7h and from z = 0.6h

to the canopy top, centred around X = 5h and z = 0.8h. Further downstream, Sku

decreases to about 0.5, as is usually observed over homogeneous canopies (Raupach
et al. 1996; Finnigan 2000). This EGZ is located in the region in which TKE is small,
upstream of the growing TKE sublayer. Dupont & Brunet (2008a) suggested that the
presence of the EGZ may be caused by the fact that the low turbulence levels in this
region emphasize the appearance of strong wind gusts coming from aloft or from the
clearing, thereby increasing the skewness of the flow. Further downstream strong wind
gusts are more ‘diluted’ in larger ambient turbulence. In the lower canopy, a region
with Sku < 0 develops from about X = 3h, just below the EGZ. This region becomes
less deep further downstream but still exists close to the ground. Despite the average
upward motion of the flow above the canopy leading edge, Skw is characterized by
large negative values just behind the edge (figure not shown), indicating the presence
of strong intermittent downward motions. Further downstream, Skw reaches typical
negative values observed within homogeneous canopies.

With a denser canopy (LAI =5), the deceleration of the flow within the canopy
is enhanced, inducing a larger flow distortion at the leading edge, visible through
the larger positive vertical velocity (figure 5) and a faster growing IBL (figure 4).
As turbulence within the IBL increases with canopy density, the faster growth rate
of the IBL is in agreement with the usual scaling argument that considers the IBL
growth rate dhIBL/dX to be of the order of 〈w′2〉1/2

yt /〈u(hIBL)〉yt , where 〈w′2〉1/2
yt is the

standard deviation of the vertical velocity within the IBL and 〈u(hIBL)〉yt the mean
streamwise velocity at the IBL top. A weak wind jet is still present in the trunk space
just behind the edge. The region of higher ruw is located closer to the edge than in
the sparser canopy case. In the same way, the pressure variance is larger and starts
to increase closer to the edge, from about X =2h against X = 3h in case 1. The EGZ
extends from X = 1.5h to X = 5h against X = 3h–5.5h, and the shear length scale,
Ls , has adjusted at X = 1h against X = 5h (figure 4). Consequently, a denser canopy
leads to more active turbulence processes in the adjustment region and a more rapid
adjustment of the flow after the edge. (The length of the adjustment region is about
8h with LAI = 5 against 10h with LAI = 2.) This latter feature is consistent with
the parameterization of the adjustment length scale, Lc, suggested by Belcher et al.
(2008), which implies that Lc decreases with increasing canopy density. However, the
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Figure 5. Same as figure 3 but for case 2 (LAI = 5).
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Figure 6. Vertical cross-section of the average enstrophy (a) and Q-criterion (b) fields for
case 1 (LAI = 2). Both variables are normalized from the mean wind speed uref at X = −8.5h
and z = 2h. The dashed black line indicates the contour of the canopy and the black dots the
upper limit of the IBL.

length of the adjustment region found here with LAI =5 corresponds to 8Lc, which is
much larger than the estimate of Belcher et al. (2008), i.e. 3Lc. As already mentioned
for LAI = 2, part of this discrepancy may be explained by the inhomogeneity of the
vertical foliage distribution in the present canopy.

3.2. Mean enstrophy and Q-criterion fields

Figure 6 presents x–z slices of time- and y-averaged enstrophy and Q-criterion fields.
Since the cores of coherent structures are characterized by a local rotation rate larger
than the strain rate, only the positive values of the Q-criterion variable were considered
in the average, in order to identify the main regions in which coherent structures are
the most intense or the most frequent. Looking at the average negative values of
the Q-criterion would be of no interest here, as it would only highlight regions in
which the strain rate is large, which are located within the lower part of the IBL. The
enstrophy and Q-criterion exhibit similar behaviour. Both increase above the canopy
in a growing layer confined within the IBL and exhibit a maximum at the canopy
top. Both maxima are adjusted with the canopy from about X = 8h. The enstrophy
increases directly from the canopy edge, while the Q-criterion starts to increase further
downstream, from around X = 2h to X = 3h. (Upstream of this location the strain
rate at the canopy top is larger than the rotation rate.) Consequently, large coherent
structures induced by the canopy in the adjustment region may be initiated around
X = 2h, in relation with the quasi-adjustment of the shear length scale, Ls , at the
canopy top, and are fully developed after X = 8h.

With a denser canopy (case 2), the enstrophy and Q-criterion develop more rapidly
above the canopy (figure 7), as previously observed in § 3 with other turbulent
statistical fields. Their magnitudes are also larger; coherent structures may therefore
be more intense or more frequent and develop more rapidly from the edge. On the
other hand, the enstrophy and Q-criterion decrease more rapidly with depth in the
canopy and are slightly smaller, indicating that coherent structures penetrate less
easily deep within the dense canopy.
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Figure 7. Same as figure 6 but for case 2 (LAI = 5).
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Figure 8. Vertical cross-section of the average square of the vorticity components in the
streamwise (a), spanwise (b) and vertical (c) directions in case 1 (LAI = 2). Vorticity
components are normalized from the mean wind speed uref at X = −8.5h and z = 2h. The
dashed black line indicates the contour of the canopy and the black dots the upper limit of
the IBL.

The enstrophy is computed as the half-sum of the square of the three vorticity
components of the flow 〈ω2

x〉yt , 〈ω2
y〉yt and 〈ω2

z〉yt in the streamwise, spanwise and
vertical directions, respectively. These three components are shown in figures 8 and 9
for the sparsest and densest canopies, respectively. Upwind from the canopy, their



Coherent structures in canopy edge flow 109

–5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

2

3

–5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

2

3

3.0
2.7
2.4
2.1
1.8
1.5
1.2
0.9
0.6
0.3
0

3.0
2.7
2.4
2.1
1.8
1.5
1.2
0.9
0.6
0.3
0

3.0
2.7
2.4
2.1
1.8
1.5
1.2
0.9
0.6
0.3
0

z/h

z/h

(a) �ωx
2�yth

2/u2
ref

(b) �ωy
2�yth

2/u2
ref

–5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

2

3

z/h

(c) �ωz
2�yth

2/u2
ref

X/h

Figure 9. Same as figure 8 but for case 2 (LAI = 5).

magnitudes are roughly identical, with a slightly smaller value for the vertical
component. Above the canopy, 〈ω2

y〉yt is always larger than 〈ω2
x〉yt , followed by 〈ω2

z〉yt ,
implying that coherent structures have a dominant transverse rotation rate, although
〈ω2

y〉yt includes a larger contribution from the mean shear (〈∂u/∂z〉yt ). When the flow

hits the canopy, 〈ω2
y〉yt first increases and reaches a maximum just above the top, in

the region defined by z =1h–1.2h and X = 3h–5h (for the sparsest canopy), before
it slightly decreases further downstream. It then reaches its adjusted value, which is
always larger than for the other two components. With a larger canopy density, the
region of maximum 〈ω2

y〉yt is closer to the edge and more intense (figure 9b). The

〈ω2
x〉yt and 〈ω2

z〉yt components do not increase from the edge as 〈ω2
y〉yt does but from

around X = 6h. They adjust at a faster rate, around X = 10h near the canopy top.
Unlike 〈ω2

y〉yt , 〈ω2
x〉yt and 〈ω2

z〉yt are maximum not at the canopy top but just above
the canopy, between z = 1.2h and z = 1.7h. Within the canopy, the three vorticity
components decrease very rapidly with depth, with slightly larger values for 〈ω2

y〉yt .

The region in which 〈ω2
y〉yt is maximum (at the canopy top and X =3h–5h for the

sparsest canopy), i.e. in which coherent structures are essentially transverse, coincides
with the location of the EGZ and with an increase in pressure variance at the canopy
top. Further downstream the transverse rotation rate is partly redistributed along
the streamwise and vertical rotation directions. There is evidence for the presence of
canopy-type coherent structures in this region, since the Q-criterion becomes positive
there and since momentum exchange also starts to be dominated by sweep motions.
These transverse vortices may therefore be viewed as the initial coherent structures
induced by the canopy.
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3.3. Two-point correlations of velocity components

Two-point correlations of velocity components provide information on the mean
size and average topology of coherent structures. Streamwise, spanwise and vertical
velocity isocorrelations and cross-correlations R11, R22, R33, R13, R12 and R23 (2.7)
are computed using a reference point at the canopy top and a range of distances
from the leading edge of the canopy. The analysis of the main characteristics of
coherent structures after the forest leading edge is based here on the observation
of three figures in parallel (figures 10–12). This allows us to limit repetitions in the
structure description and give a continuing picture of the structure from the edge to
the equilibrium region. The contours of R11, R22, R33 and R13 are shown in figures 10
and 11 in the x–z plane, and the contours of R12 and R23 are shown in figure 12 in
the y–z plane.

Well downwind from the edge, at X � 10h, the shapes of the correlated areas are
consistent with those previously observed over homogeneous canopies in wind-tunnel
(Shaw et al. 1995), field (Raupach, Antonia & Rajagoplan 1991) and LES (Su et al.
2000; Dupont & Brunet 2008b) experiments. In the x–z plane with a downwind tilt
from the horizontal R11 and R22 have a near-elliptical form (figure 10), while R33 is
roughly circular in the three space directions with a slight elongation in the vertical
(figure 11a). The well-correlated areas of R11, and of R22 to a lesser extent, appear
much larger than those of R33. The reason is that u and v include contributions
from large eddies coming from the atmosphere aloft (inactive turbulence), whereas w

depends more on local flow properties and is therefore representative of more active
turbulence, which is responsible for most of momentum transport (Raupach et al.
1996). The downwind tilt angles of R11 and R22 have been estimated along the x-axis
in the same way as in Dupont & Brunet (2008b), i.e. by performing a linear regression
on the height of the maximum in R11 and R22 in each vertical section, across a region
between the reference point and the downwind point at which R11 and R22 become
less than 0.2, respectively (figure 13). The slope angles deduced from R11 and R22 are
similar and close to 20◦ (figure 13, at X � 10h), in good agreement with previous
observations (Shaw et al. 1995). Within the canopy a region of negative correlation
of R11 is present upstream from the reference point, indicating a recirculation region.
Furthermore, the maximum of R11 occurs with a spatial shift reflecting a positive
time delay from the treetop level. This shows that turbulent structures penetrating the
canopy are inclined in the forward direction. Conversely, the maximum of R33 occurs
with no time delay, which shows that perturbations in vertical velocity at treetop
occur simultaneously at all levels within the canopy, due to the rapid diffusion of
pressure fluctuations within the canopy (Raupach, Finnigan & Brunet 1989; Shaw
& Zhang 1992). Since large values of u at the canopy top are usually associated
with negative values of w, the negative contours of R13 (figure 11b) should be more
representative of sweep motions than ejection motions; R13 contours indicate that
the average structure shape associated with R11 contours is a sweep motion at the
canopy top, preceded by an ejection, since R13 is negative at the reference point and
positive upwind. Contours of R11 and R22 in the x–z plane do not represent the same
part of the coherent structures, since u and v are not correlated in the x–z plane, as
R12 is close to zero (figure not shown). In the y–z plane, contours of R12 and R23

indicate the presence of two counter-rotating streamwise vortices around the sweep
motion at the canopy top and centred at about Y = −1h and Y = 1h (figure 12a), in
agreement with the ensemble-averaged eddy structure observed from LES by Finnigan
et al. (2009) over a homogeneous canopy. As stated in § 1.1, coherent structures over
homogeneous canopies are characterized by an upstream head-down sweep-generating
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Figure 10. Contours of the average streamwise (a) and spanwise (b) velocity autocorrelation
functions, R11 and R22, respectively, in a streamwise cross-section at various distances from
the forest leading edge in case 1 (LAI = 2). Contours are displayed from −0.2 to 0.9 with an
interval of 0.1. Grey areas indicate negative values of correlations. The black dots indicate the
upper limit of the IBL.
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Figure 11. Same as figure 10 but for the vertical velocity autocorrelation R33 (a) and the
cross-correlation R13 between the streamwise and the vertical velocities (b). Contours are
displayed from −0.1 to 0.9 with an interval of 0.1 (a) and from −0.4 to 0.4 with an interval
of 0.08 (b).
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the forest leading edge in cases 1 (LAI = 2) and 2 (LAI =5); (b) is the same as (a), but α is
normalized by the IBL depth, hIBL.

hairpin vortex, i.e. with a pair of counter-rotating longitudinal vortices in the spanwise
direction, superimposed on a downstream head-up ejection-generating hairpin vortex
(Finnigan et al. 2009). Consequently, contours of R22 in the x–z plane may represent
an ensemble average of the counter-rotating longitudinal vortices constituting the
pair of hairpin vortices. As sweep motions dominate ejection motions at the canopy
top, head-down vortices play a major role.

In the edge region, X � 2h, R11 and R22 already exhibit a near-elliptical shape
further downstream (figure 10), but their contours and also those of R33 (figure 11a)
extend within and above the canopy as well as in the IBL over larger streamwise and
lateral distances than further downstream, meaning that structures in this region are
much larger. The correlated area of R11 is especially larger upwind from the reference
point, which may be the signature of strong wind gusts coming from the clearing and
reaching the canopy top at its edge. The slope angle of R11 is about 15◦ (figure 13a),
a value close to that of the IBL, since the contours of R11 are stretched along the top
of the IBL (figure 10a). The angle of R22, about 20◦, is larger (figure 13a). Within the
canopy, the negative correlated area observed in R11 further downstream is not yet
present, and R33 is lower. In the y–z plane, the double-roller structure is not observed.
Since the shear layer at the canopy top is not yet well developed in this region (Ls

is larger than its equilibrium value), the structures associated with these correlated
contours may be more representative of large structures coming from the upwind
clearing than structures developing at the canopy top.

In the adjustment region (2h < X < 10h), the well-correlated areas of R11, R22 and
R33 are now essentially confined within the IBL (figures 10a, b and 11a). The slope
angles of R11 and R22 are very similar; they both increase with increasing distance
from the edge and reach a maximum around X = 6h–7h before they decrease towards
their adjusted value of 20◦ (figure 13a). Figure 13(b) shows the variations in the
slope angles of R11 and R22 after the edge, normalized by the IBL height. It appears
that both normalized slopes do not vary in the region 2h � X � 8h, meaning that the
increase of the structure slope observed here is related to the development of the IBL.
Further downstream both normalized slopes decrease as the IBL still develops, while
the structure slopes have adjusted. Within the canopy, the negative correlated area
of R11 develops from about X = 4h and reaches a maximum in magnitude at about
X = 6h, associated with a positive correlated area of R13. Additionally, R33 increases
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within the canopy and starts to be surrounded by negative correlated regions at about
X = 4h, suggesting that sweeps penetrate more easily and are surrounded by slight
ejections. This feature is more marked around X = 6h. The negative peak of R11 in
the sub-canopy coincides with the maximum in spanwise vorticity observed in § 4.1,
corresponding to coherent structures with a dominant transverse vorticity component
and, consequently, with recirculation regions within the canopy, characterized by a
negative streamwise velocity. In the y–z plane, counter-rotating streamwise vortices
surrounding sweep motion become visible from about X = 6h, while in the x–z

plane, the width of the positive correlated area of R22 becomes smaller and better
defined, which may indicate the presence of the first double-roller structures from the
edge, characteristics of canopy turbulent structures. This feature is also confirmed by
the development of the streamwise and vertical vorticity components in this region
(figure 8a and c) and by the establishment of the shear layer at the canopy top
(figure 4).

With increasing canopy density (LAI =5; figure not shown), the correlated areas
establish more rapidly from the edge, as was observed for the mean turbulence fields
in § 3.1. Hence, canopy structures seem to develop closer to the edge in agreement
with the faster establishment of the shear layer. The slope angles of R11 and R22 have
a similar behaviour with increasing distance from the edge as for the sparser canopy
but remain slightly larger and reach a maximum value closer to the edge, between
X = 5h and X = 6h, due to the faster-growing and deeper IBL that drives the slope
angle of the structures from X = 1h–6h (figure 13b).

3.4. Separation length scale of coherent structures

As stated in the introduction, coherent structures can be seen as occasional, large-
amplitude excursions in time series of instantaneous turbulent variables. Several
conditional techniques such as the wavelet transform exist to detect ramp-like
signatures of coherent structures. Collineau & Brunet (1993a , b) demonstrated that
the wavelet transform is a suitable tool for detecting coherent structures in the
vicinity of vegetation canopies by decomposing time series into time and scale and
by determining the location of the dominant structures in the time series. In order
to analyse the variation of the length scale, li (where i is either ‘u’ or ‘w’), and
the separation length scale, Λi , of coherent structures with the distance from the
edge, the wavelet transform technique was applied to instantaneous time series of the
streamwise and vertical wind velocity components u and w, respectively, at various
distances downwind from the leading edge of both canopies. The same methodology
as in Brunet & Irvine (2000) and Dupont & Brunet (2008b), summarized in the
Appendix, was used; Λi is estimated as (T Uc)/Ni and li as (UcΓi), where Ni is the
number of structures detected during time T , Γi the average structure time scale and
Uc the convection velocity of the structures, which was assumed equal to 1.8〈u〉z = h

yt

as suggested by Raupach et al. (1996). Figure 14 shows Λu and Λw normalized by
the shear length scale, Ls , (figure 14a) and by the IBL depth, hIBL, (figure 14b) and
lu and lw normalized by Ls (figure 14c) and hIBL (figure 14d ).

For both canopies, Λw normalized by Ls appears adjusted with the canopy from
about X = 3h, while lw is adjusted about 2h further downstream. The opposite is
visible when Λw is normalized by hIBL. The rapid establishment of the shear layer
from the edge (figure 4) explains the rapid adjustment of Λw , as the development
of Kelvin–Helmhotlz instabilities that initiate coherent structures, and thus their
separation distance, is driven by Ls . On the other hand, the adjustment of lw requires
a longer distance from the edge, of about 5h–6h. In the region 3h � X � 6h, lw
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(LAI = 5) canopies.

scales with the depth of the IBL (lw/hIBL ≈ 1). Hence, the adjustment distance of lw
corresponds to that over which the IBL has grown enough to allow the structures
to be fully developed, as imposed by the depth of the canopy-top shear layer. This
adjustment distance is also that required by the development of two counter-rotating
streamwise vortices, i.e. about 6h (see § 3.3).

In the adjusted region, Λu and lu appear about twice as large as Λw and lw ,
respectively, for both canopies, whatever the normalization used, which is consistent
but slightly less than the ratio of 3 observed by Brunet & Irvine (2000). This feature
is explained by the fact that u includes contribution from large eddies coming
from the atmosphere above, while w is more representative of the active turbulence.
Furthermore, Λw/Ls ranges between 8 and 9 for both canopies in agreement with the
7–10 range identified by Raupach et al. (1996) from the plane mixing-layer analogy of
canopy flow. Just behind the edge, Λw appears much larger than Λu when normalized
by hIBL, meaning that a large number of detected structures reaching the canopy have
a negligible vertical wind velocity.

3.5. Instantaneous fields

The development of specific coherent eddies from the canopy leading edge is ana-
lysed in this section. For this purpose figures 15–18 present x–z slices of instant-
aneous streamwise wind velocity, perturbation pressure, enstrophy and Q-criterion,
respectively, at 5 s intervals during a period of 30 s over the dense canopy (LAI = 5).
Two coherent structures are tracked; they are localized in the figures by dashed
circles referenced by letters A and B, respectively.

A t = 0 s, coherent structure A is already developed and localized around X =3.8h. It
is characterized by a slight recirculation within the canopy, a low pressure, a maximum
in enstrophy just above the canopy and a small maximum of the Q-criterion. This
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Figure 15. Streamwise cross-section of instantaneous streamwise wind velocity (background
colour) and wind vectors at 5 s intervals during a period of 30 s (case 2, LAI =5). The dashed
circles identified by letters A and B track the development of two coherent structures. The
dashed black line indicates the contour of the canopy.
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Figure 16. Same as figure 15, for the pressure perturbation.
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Figure 17. Same as figure 15, for the enstrophy.
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Figure 18. Same as figure 15, for the Q-criterion.
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structure is transported by the flow and increases in intensity with a maximum
enstrophy and Q-criterion at t = 20 s, around X = 8h. At this time, wind vectors
indicate that the structure is essentially transverse with a clear recirculation within
the canopy. The structure then interacts with other small structures coming from
above and is transformed into a more complex structure with several less intense
vortex cores as indicated by the enstrophy and Q-criterion maxima. This region is
characterized by a low pressure.

At t =0 s, coherent structure B is not yet developed. After a strong wind gust
hits the canopy edge it seems to move parallel to the canopy top, down to about
X = 3.5h at t = 20 s. This gust contributes to increasing the skewness of the streamwise
velocity as discussed in § 3. During the first 10 s, this gust is characterized by high
pressure. High pressure is later located at the front of the gust, whereas a low-
pressure maximum forms on its back (t = 20 s). The gust enstrophy increases at
the canopy top, and the Q-criterion remains small but positive, indicating that the
rotation rate of the flow is slightly larger than the strain rate. From t = 25 s, the
gust starts to roll over around X = 4h with the formation of a recirculation region
within the canopy. The wind vectors indicate the formation of a transverse vortex,
which is well defined at t = 30 s. The core of this vortex is characterized by a low
pressure and a maximum in enstrophy and Q-criterion. A sweep motion can be seen
on its downwind side at which pressure is maximum and an ejection motion on
its upwind side at which pressure is minimum. The analysis of the wind velocity
components in a spanwise slice (not shown here) suggests that the sweep motion
induces the formation of a pair of counter-rotating longitudinal vortices, which have
some similarities with the ensemble-averaged picture of coherent structures identified
by Watanabe (2004) and Finnigan et al. (2009) from spatially averaged coherent
structures but with a much more disturbed shape. The structure is transported by
the flow and breaks down further downstream, around X = 7h, into smaller and less
coherent structures at about t =45 s (not shown). It takes structure B about 20 s to
reach its maturity stage around X = 4h and about an additional 20 s to decay around
X = 7h. A rough estimate of the convection velocity of the structure from figure 15
confirms previous observations (Shaw et al. 1995) that the convection velocity, about
3.5 m s−1, is roughly twice the mean streamwise velocity of the flow at the canopy top,
about 1.8 m s−1.

4. Discussion and conclusions
The main characteristics of the flow in the adjustment region downstream from the

forest leading edge observed in § 3.1 are sketched in figure 19(a). Associated with this
mean flow behaviour, a schematic average picture of the various stages of formation
of coherent eddy structures from the forest leading edge is also presented (figure 19b),
as deduced from the mean numerical fields of wind vorticity and spatial correlations
of the wind velocity components analysed in the previous section. We first focus on
the sparser canopy (LAI = 2):

(i) In the edge region, from X = 0 to about 2h, a strong wind gust coming from
the upwind clearing or aloft, and reaching the canopy shear layer, induces the
development of an inflection point in the velocity profile at the canopy top, leading to
the development of Kelvin–Helmholtz instabilities. At this stage, the wind gust moves
parallel to the canopy top with a maximum velocity at its front and an average near-
elliptical form with a downwind tilt from the horizontal close to that of the growing
IBL that develops at the edge (figure 10). No large coherent structures induced by
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Figure 19. Idealized representation of the main characteristics of edge flow (a) and of the
successive stages of development of coherent structures downwind from a forest leading edge
(b) for a canopy with an LAI of about 2.

the canopy have completely formed yet, as indicated by the near-zero Q-criterion
(figure 6b). This indeed means that the magnitudes of the flow rotation rate and
strain rate are similar. Moreover, the momentum flux at the canopy top is dominated
by ejection motions instead of sweep motions, which are currently observed over
homogeneous canopies. This domination of ejection motions in the edge region is
due to the penetration of turbulent structures within the canopy from the upwind
side of the edge, which are hereafter advected vertically towards the canopy top when
they are not totally dissipated by canopy drag. These ejection motions may also be
responsible for the rapid increase in the efficiency of vertical turbulent transfer from
the edge, as illustrated by the behaviour of ruw (figure 3f ).

(ii) Between about X = 3h and X = 5h, the shear layer at the canopy top has already
adjusted (figure 4) and induces the formation of transverse vortices through Kelvin–
Helmholtz instabilities, as shown by the increase in the lateral component of wind
vorticity (figure 8b). Furthermore, positive values of the Q-criterion appear around
X = 2h (figure 6b), meaning that the rotation rate becomes larger than the strain rate.
Such rollers may therefore be considered as the first large coherent structures induced
by the canopy behind the leading edge. At the beginning of their life, these structures
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are essentially transverse, since the lateral component of wind vorticity is maximum
between X = 3h and X =5h (figure 8b) and larger than the other two. Contours
of the streamwise wind velocity correlation, R11, indicate that it reaches a negative
maximum at mid-canopy height due to the recirculation induced by the presence
of these transverse rollers. The positive time delay of the R11 maximum within the
canopy indicates that these structures are slightly inclined when they penetrate the
canopy (figure 10a). Due to the rapid adjustment of the shear length scale, Ls , the
average distance between successive structures at the canopy top is also adjusted in
this region, while the structure length scale still increases with the growing IBL up to
about 5h–6h, where the IBL is deep enough for structures to fully develop. In this
region, the length scale of active turbulent structures is close to the IBL depth. The
growth of turbulent structures is probably associated with processes of aggregation
of close structures as observed from instantaneous fields (§ 3.5) as well as in mixing
layers (Winant & Browand 1974; Dimotakis & Brown 1976). With the formation of
coherent structures in this region, the ejection motions dominating vertical momentum
exchange are progressively replaced by sweep motions from about X = 3h (figure 3e)
that contribute to maintain the large efficiency of vertical turbulent transfer at the
canopy top, as illustrated by the behaviour of ruw (figure 3f ). The presence of these
coherent structures is also responsible for the increase in the pressure variance at the
canopy top (figure 3g) caused by the presence of regions of low and high pressure in
the core and at the front of these structures, respectively. Additionally, the skewness
of the streamwise velocity, Sku, reaches a maximum (figure 3h) corresponding to
the EGZ observed by Raupach et al. (1987) from wind-tunnel measurements, where
strong intermittent downward motions penetrate the canopy. Dupont & Brunet
(2008a) suggested that the EGZ could be explained by the low turbulence levels
in this region, which may emphasize the occasional presence of strong wind gusts
coming from aloft or from the clearing. This indeed increases the skewness of the
flow, whereas further downstream strong wind gusts are more ‘diluted’ in larger
ambient turbulence. This assumption was reinforced by the observation of Dupont
& Brunet (2008a) of a strong negative correlation between the canopy top Sku and
TKE downwind from the leading edge.

(iii) Secondary instabilities, probably due to the strong wind shear at the canopy
top, then destabilize the transverse coherent structures. They lead to an increase in
vertical and streamwise vorticity components from around X = 6h (figures 8a and
6c), but the transverse component still dominates the other two. In the transverse
plane, two counter-rotating streamwise vortices start to be visible from the spatial
cross-correlation between the streamwise and spanwise wind velocity components
(figure 12a), which surround the sweep motion at the canopy top. This feature is in
agreement with the schematic picture of coherent structures obtained by Finnigan
et al. (2009) from an LES as an upstream head-down sweep-generating hairpin vortex
superimposed on a downstream head-up ejection-generating hairpin vortex. In our
case, the observed two counter-rotating streamwise vortices may result from the
ensemble average of pairs of hairpin vortices, with the predominance of the head-
down vortex, as sweep motions dominate ejection motions at the canopy top. This
structure shape is further consistent with the location of maxima in the vertical and
streamwise vorticity components, which are not at the canopy top as the spanwise
component but slightly above it. Indeed, the lower base of the double-roller vortices
may be characterized by a spanwise vortex at the canopy top, inducing a maximum in
spanwise vorticity, while the downwind pair of counter-rotating vortices, characterized
by large values of streamwise and vertical vortices, are positively inclined from the
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horizontal. The separation distance and length scale of these structures are adjusted
with the canopy (figure 14).

(iv) Further downstream, from about X = 9h, all turbulent variables have adjusted
with the canopy and exhibit the well-known characteristics of homogeneous canopies.
The initial transverse vortices located at a few canopy heights behind the edge have
become complex three-dimensional vortices through the influence of instabilities, as
is observed over homogeneous canopies. These structures later break down to smaller
and less coherent structures and are replaced by other structures in formation.

In a denser canopy (LAI = 5) the development of coherent structure and of the
IBL, as well as the adjustment of turbulent fields from the edge, are more rapid. The
EGZ and the maximum of spanwise vorticity, and consequently the rollover of wind
gusts, occur closer to the leading edge (figures 5h and 8b, respectively). Additionally,
turbulent processes are enhanced in the adjustment region: the transverse rotation rate
is larger, and the EGZ is more intense. A decrease in coherent-structure separation
distance with increasing canopy density is observed, in agreement with Raupach et al.
(1996) who predicted that the streamwise spacing of the dominant canopy eddies Λw

is proportional to the shear length scale, Ls , since Ls decreases with increasing canopy
density.

The schematic picture of coherent-structure formation described above reinforces
the prediction of Raupach, Coppin & Legg (1986) and Raupach et al. (1996) that
coherent structures over a vegetation canopy are generated through mechanisms
similar to those acting in a plane mixing layer. It also confirms the suggestion of
Morse et al. (2002) that the forest edge itself generates a plane mixing layer. While
in plane mixing-layer flows the shear layer continuously decays, the shear layer
at the canopy top adjusts at a few canopy heights from the edge and is further
maintained by canopy drag (Nepf & Ghisalberti 2008). Compared with the schematic
picture of large eddy formation over homogeneous canopies proposed by Finnigan &
Brunet (1995) (figure 1), the main difference lies in the fact that the successive stages
of coherent-structure development occur at relatively well-defined locations in the
adjustment region after the leading edge, whereas they occur at random locations
over homogeneous canopies.

This development of coherent structures from the forest leading edge may also be
compared with the development of vortices simulated above the edge of a solid block
(front-facing step flow) by Lesieur et al. (2003), as this case can be considered as the
extreme case of an infinitely dense vegetation canopy. The main difference between
the flow across a forest edge and that in a mixing layer or across a solid block is the
presence in the edge adjustment region of a mean upward motion from the lower flow
to the upper flow. This average upward motion brings up low values of TKE towards
the flow interface (the canopy-top region here), which delays the development of the
region of high TKE at the flow interface and therefore enhances the skewness of the
streamwise wind velocity. Furthermore, the presence of a mean upward motion in
the edge adjustment region may contribute, along with the background turbulence,
to destabilize the initial transverse rollers. Consequently, the instantaneous topology
of these structures, as observed from turbulent fields, are not as well-defined as in
a mixing layer in which the inlet flow is usually laminar. However, the analysis
of instantaneous fields shows that coherent structures appear as resulting from the
‘branching’ of tubes localized in region of low pressure in which their cores are
characterized by high values of enstrophy and Q-criterion.

Although mesoscale structures were not considered in our simulation due to the
limited vertical size of the computational domain, we believe in the conclusion that
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the general picture of the mean flow and turbulent structures that comes out of this
study would still be valid in a more developed neutral boundary layer. It has to be
pointed out that these results apply to canopies with homogeneous foliage vertical
distribution and a rather dense trunk space. For canopies with a more open trunk
space such as in a maritime pine forest (Dupont & Brunet 2008a), turbulence edge
flow should be more complicated.
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Appendix. Ramp-signal detection with wavelet transform
The wavelet transform was used to detect ramp-like coherent structures in time

series, following the same approach as Collineau & Brunet (1993a , b) and Brunet &
Irvine (2000). The continuous wavelet transform of a signal, h(t), is defined as

Tp(a, b) =
1

ap

∫ ∞

−∞
h(t)g

(
t − b

a

)
dt, (A 1)

where g(t) is the wavelet function; a is the wavelet scale; b is position translation; p is
a normalization factor equal to 1 here; and Tp(a, b) represents the wavelet coefficients.

As the normalized wavelet variance spectra Wp(a) represents the distribution of
energy along the scales (or wavelet dilatation) a, its peak should correspond to the
scale of coherent structures:

Wp(a) =

∫ ∞

−∞
|Tp(a, b)|2 db. (A 2)

The wavelet transform was applied to instantaneous vertical and streamwise velocity
time series with the following methodology:

(i) Wavelet transforms were computed from Haar wavelet over 30 min data runs
sampled at 33 Hz, which were simulated by the model at the canopy top.

(ii) The representative scale of coherent structures was deduced from the wavelet
variance spectra (peak scale).

(iii) Since the Mhat detection function crosses the zero line when a coherent
structures is detected (Collineau & Brunet 1993 b), the previous peak Haar scale was
converted to the corresponding Mhat scale, and wavelet coefficients were calculated
for the characteristic scale of coherent structures with the Mhat wavelet.

(iv) The number of ‘zero crosses’ in the detection function was then counted to
determine the average temporal separation of coherent structures in the total time
period and therefore their frequency.
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